W tej lekcji wideo znajdziesz bardzo dokładne omówienie pojęcia funkcji kwadratowej.1 Sprawdzian z funkcji kwadratowej Grupa 1 1.1 FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej Matura 2021; Matura 2020; Zadania maturalne; Egzamin 2023; Egzamin 2022; Napisz postać kanoniczną funkcji . Podaj wzór funkcji kwadratowej , Rozwiązanie: Z postaci iloczynowej odczytujemy miejsca zerowe funkcji kwadratowej: Wyznaczamy współrzędną -ową wierzchołka jako średnią arytmetyczną miejsc zerowych: Teraz wyznaczamy współrzędną licząc wartość funkcji : Zatem mamy: Zatem postać kanoniczna jest postaci: Zamiana postaci kanonicznej na postać ogólną i iloczynową. PARY ZDAŃ - matura 1.7K plays 11th - 12th 8 Qs . The first conditional 4.3K plays 10th - 11th 12 Qs . Relative clauses Wykresem funkcji kwadratowej f(x) Rozwiązanie zadania z matematyki: Największą wartością funkcji kwadratowej f(x)=-frac{1}{3}x^2+4x+1 w przedziale < -1,5> jest {A) -35}{B) frac{11}{3}}{C) frac{38 Dziedzina funkcji to zbiór wszystkich argumentów (czyli iksów) dla których funkcja przyjmuje jakąś wartość. Bardzo często dziedziną funkcji jest po prostu zbiór liczb rzeczywistych, co oznacza że funkcja przyjmuje wartości dla dowolnego argumentu x. Tak też będzie w przypadku standardowych funkcji liniowych czy kwadratowych Matura 2020 sierpień. Na tej stronie umieściłem rozwiązania zadań z matury poprawkowej z 8 września 2020. Szybka nawigacja do zadania numer: 5 10 15 20 25 30 . W zestawie 250 liczb występują jedynie liczby 4 i 2. Liczba 4 występuje 128 razy, a liczba 2 występuje 122 razy. W kartezjańskim układzie współrzędnych (𝑥,𝑦) przedstawiono fragment wykresu funkcji kwadratowej 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐. Wierzchołek paraboli, która jest wykresem funkcji 𝑓, ma współrzędne (5,−3). Jeden z punktów przecięcia paraboli z osią 𝑂𝑥 układu współrzędnych ma współrzędne (4,0). - Vademecum maturalne i egzaminacyjne z matematyki, Różne, 193 Największy internetowy zbiór zadań z matematyki Baza zawiera: 19752 zadania, 1833 zestawy, 35 poradników W tym filmie wytłumaczę Ci jak rozwiązać KROK PO KROKU zadania otwarte z funkcji kwadratowej, które pjawiły się na maturach w zeszłych latach. Pokażę Ci dwie AkgMHq. Zobacz najważniejsze zadania do dotyczące własności funkcji kwadratowej i napisz sprawdzian na 5. Zadanie – sprawdzian. Mając funkcję kwadratową: \(y={{x}^{2}}+5x+6\) Wyznacz współczynniki a, b, c Odpowiedz, czy parabola jest skierowana ramionami do góry, czy do dołu Wyznacz deltę i odpowiedz, ile miejsc zerowych ma ta funkcja Wyznacz miejsca zerowe Wyznacz współrzędne wierzchołka paraboli Określ współrzędne przecięcia się paraboli z osiami X i Y Wyznacz wartość funkcji dla argumentu -5 Wykonaj wykres tej funkcji Sprawdź, czy punkt (1,3) należy do wykresu funkcji Określ przedziały monotoniczności funkcji kwadratowej Dla jakich argumentów wartości funkcji są większe od zera Dla jakich argumentów wartości funkcji są mniejsze od zera Dla jakich argumentów wartości funkcji są mniejsze od 6 Oblicz pole trójkąta, którego wierzchołki tworzą punkty przecięcia się wykresu z osiami X i Y Zobacz na stronie Zobacz na YouTube 1) Wyznacz współczynniki a, b, c \[y={{x}^{2}}+5x+6\] a = 1, b = 5, c = 6 Współczynniki a, b, c są bardzo przydatne do obliczania delty. 2) Odpowiedz, czy parabola jest skierowana ramionami do góry, czy do dołu \(a>0 \) zatem parabola skierowana jest ramionami do góry. 3) Wyznacz deltę i odpowiedz, ile miejsc zerowych ma ta funkcja kwadratowa \(\Delta ={{b}^{2}}-4\cdot a\cdot c={{5}^{2}}-4\cdot 1\cdot 6=25-24=1\) delta jest dodatnia, więc mamy dwa pierwiastki rzeczywiste. 4) Wyznacz miejsca zerowe \[{{x}_{1}}=\frac{-b-\sqrt{\Delta }}{2\cdot a}=\frac{-5-1}{2\cdot 1}=\frac{-6}{2}=-3\] \[{{x}_{2}}=\frac{-b+\sqrt{\Delta }}{2\cdot a}=\frac{-5+1}{2\cdot 1}=\frac{-4}{2}=-2\] 5) Wyznacz współrzędne wierzchołka paraboli \[\begin{align} & a=1,\ b=5,\ c=6 \\ & \Delta =1\ (z\ \\ \end{align}\] \(W\ \left( p,q \right)\) współrzędne wierzchołka paraboli, gdzie \[p=\frac{-b}{2a}=\frac{-5}{2\cdot 1}=-2,5\] \[q=\frac{-\Delta }{4a}=\frac{-1}{4\cdot 1}=-0,25\] \[W\ \left( -2,5\ ;\ -0,25 \right)\] 6) Określ współrzędne przecięcia się paraboli z osiami X i Y Współrzędne przecięcia z osią X to miejsca zerowe. Wiadomo, że funkcja w miejscu zerowym przyjmuje wartość zero, czyli y = 0. Zatem tutaj nie ma dużo roboty, ponieważ miejsca zerowe zostały wyznaczone w punkcie (4): \({{x}_{1}}=-3,\ {{x}_{2}}=-2\) Odp.:Współrzędne przecięcia paraboli z osią X: \(\left( -2,0 \right)\ i\ \left( -3,0 \right)\). Współrzędne przecięcia z osią Y mają zawsze współrzędną x = 0. Zatem do wzoru z niewiadomą x wstawiasz „0”. \[y={{x}^{2}}+5x+6\] \[y={{0}^{2}}+5\cdot 0+6=6\] Odp.:Współrzędna przecięcia paraboli z osią Y: (0, 6). 7) Wyznacz wartość funkcji dla argumentu -5 Należy w miejsce niewiadomej x wstawić liczbę „-5”. \[y={{\left( -5 \right)}^{2}}+5\cdot \left( -5 \right)+6\] \[y=25-25+6=6\] Odp.: Wartość funkcji dla argumentu -5 wynosi 6. Można to inaczej zapisać: f(-5) = 6. 8) Wykonaj wykres tej funkcji W tym punkcie bierzemy wybrane informacje obliczone na początku zadania. Miejsca zerowe: \(\left( -2,0 \right)\ i\ \left( -3,0 \right)\) Współrzędne wierzchołka paraboli: \(W\ \left( -2,5\ ;\ -0,25 \right)\) Nie jest to konieczne, ale dobrze również wyznaczyć punkt przecięcia wykresu z osią Y: (0, 6). Teraz rysujesz układ współrzędnych i zaznaczasz charakterystyczne punkty funkcji kwadratowej. 9) Sprawdź, czy punkt (1, 3) należy do wykresu funkcji Masz wzór funkcji \(y={{x}^{2}}+5x+6\) oraz x = 0, y = 3 ponieważ dany jest punkt o współrzędnych (1, 3). Zatem w miejsce x wstawiasz „0”, a za y wstawiasz „3”. \begin{align} & 3={{1}^{2}}+5\cdot 1+6 \\ & 3=1+5+6 \\ & 3\ne 12 \\ \end{align} Otrzymaliśmy sprzeczność, zatem punkt (1, 3) nie należy do wykresu funkcji kwadratowej. 10) Określ przedziały monotoniczności funkcji kwadratowej Mam nadzieję, że zauważyłeś, iż parabola jest wykresem funkcji niemonotonicznej (tzw. monotonicznej przedziałami). W zadaniu wykorzystujemy wykres paraboli i współrzędne jej wierzchołka: \(W\ \left( -2,5\ ;\ -0,25 \right)\) Funkcja jest malejąca w przedziale: \(\left( -\infty ; \right.\left. -2,5 \right\rangle \) Funkcja jest rosnąca w przedziale: \(\left\langle -2,5; \right.\left. +\infty \right)\) 11) Dla jakich argumentów wartości funkcji są większe od zera. W zadaniu x = ?, zaś y > 0. Zatem graficznie naszym rozwiązaniem są x-sy, których współrzędne y > 0, czyli leżą nad osią X. Wykorzystujemy rysunek paraboli z naszego zadania. Odp.: Dla \(x\in \left( -\infty ,-3 \right)\cup \left( -2,+\infty \right)\) 12) Dla jakich argumentów wartości funkcji są mniejsze od zera W zadaniu x = ?, zaś y < 0. Wykorzystujemy rysunek z punktu 11). Oczywiście tym razem należy zakreskować część wykresu znajdującą się pod osią X, ponieważ tylko tam istnieją współrzędne y < 0. Odp.: Dla \(x\in \left( -3,-2 \right)\) 13) Dla jakich argumentów wartości funkcji są mniejsze od 6 \[x=?,\quad y<6\] \[\begin{align} & y={{x}^{2}}+5x+6 \\ & {{x}^{2}}+5x+6<6 \\ & {{x}^{2}}+5x<0 \\ & x\left( x+5 \right)<0 \\ & {{x}_{1}}=0\quad {{x}_{2}}=-5 \\ \end{align}\] Odp.: Dla \(x\in \left( -5,0 \right)\) 14) Oblicz pole trójkąta, którego wierzchołki tworzą punkty przecięcia się wykresu z osiami X i Y Korzystając z wykresu odczytujemy długość podstawy, którą jest odległość między miejscami zerowymi. Odczytujemy również wysokość trójkąta rozwartokątnego. \[P=\frac{a\cdot h}{2}=\frac{1\cdot 6}{2}=3\] Odp.: Pole trójkąta wynosi 3 jednostki kwadratowe. Zadanie – sprawdzian. Mając funkcję kwadratową \(y=-{{x}^{2}}+x+6\) Wyznacz współczynniki a, b, c Odpowiedz, czy parabola jest skierowana ramionami do góry, czy do dołu Wyznacz deltę i odpowiedz ile miejsc zerowych ma ta funkcja Wyznacz miejsca zerowe funkcji Wyznacz współrzędne wierzchołków paraboli Określ współrzędne punktów przecięcia się paraboli z osiami X i Y Wyznacz wartość funkcji dla argumentu \(-\frac{1}{10}\) Wykonaj wykres funkcji Sprawdź, czy punkt P (-1, 4) należy do wykresu funkcji Określ przedziały monotoniczności funkcji kwadratowej Dla jakich argumentów wartości funkcji są większe od zera Dla jakich argumentów wartości funkcji są mniejsze od zera Dla jakich argumentów wartości funkcji są nie większe od 4 Wyznacz współrzędne punktów przecięcia się danej funkcji kwadratowej \(y=-{{x}^{2}}+x+6\) z funkcją liniową \(y=-x+5\) Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Zadanie – sprawdzian. Mając wzór funkcji \(y=-{{x}^{2}}+8 x-12\) Podaj dziedzinę funkcji Podaj miejsca zerowe funkcji (jeśli istnieją) Wyznacz wierzchołek paraboli Podaj współrzędne punktów przecięcia się wykresu z osią X i Y Wykonaj wykres funkcji Podaj najmniejszą i największa wartość funkcji (jeśli istnieje) Podaj zbiór wartości funkcji Wyznacz przedziały monotoniczności Dla jakich argumentów funkcja przyjmuje wartości mniejsze od -8 Treść dostępna po opłaceniu abonamentu.

zadania z funkcji kwadratowej matura